Source code for oqupy.pt_tebd

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Module for the process tensor approach to time evolving block decimation.
This module is based on [Fux2023].

**[Fux2023]**
G. E. Fux, D. Kilda, B. W. Lovett, and J. Keeling, *Thermalization of a
spin chain strongly coupled to its environment*, arXiv:2201.05529 (2022).

"""

from typing import Dict, List, Optional, Text, Union

import numpy as np

from oqupy.backends.pt_tebd_backend import PtTebdBackend
from oqupy.base_api import BaseAPIClass
from oqupy.config import PT_TEBD_DEFAULT_ORDER
from oqupy.config import PT_TEBD_DEFAULT_EPSREL
from oqupy.control import ChainControl
from oqupy.dynamics import Dynamics
from oqupy.mps_mpo import GateLayer, SiteGate
from oqupy.mps_mpo import compute_tebd_propagator
from oqupy.mps_mpo import AugmentedMPS
from oqupy.process_tensor import BaseProcessTensor
from oqupy.process_tensor import TrivialProcessTensor
from oqupy.system import SystemChain
from oqupy.util import get_progress

NoneType = type(None)

[docs]class PtTebdParameters(BaseAPIClass): r""" Parameters for the process tensor time evolving block decimation computation. Parameters ---------- dt: float Length of a time step :math:`\delta t`. - It should be small enough such that a trotterisation between the system Hamiltonian and the environment it valid, and the environment auto-correlation function is reasonably well sampled. order: int Time evoling block decimation (TEBD) Trotterization order. epsrel: float The maximal relative error in the singular value truncation (done in the underlying TEBD tensor network algorithm). - It must be small enough such that the numerical compression does not truncate relevant correlations. name: str (default = None) An optional name for the PT-TEBD parameters object. description: str (default = None) An optional description of the PT-TEBD parameters object. """ def __init__( self, dt: float, epsrel: Optional[float] = PT_TEBD_DEFAULT_EPSREL, order: Optional[int] = PT_TEBD_DEFAULT_ORDER, name: Optional[Text] = None, description: Optional[Text] = None) -> None: """Create a PtTebdParameters object.""" self.dt = dt self.order = order self.epsrel = epsrel super().__init__(name, description) def __str__(self) -> Text: ret = [] ret.append(super().__str__()) ret.append(" dt = {} \n".format(self.dt)) ret.append(" order = {} \n".format(self.order)) ret.append(" epsrel = {} \n".format(self.epsrel)) return "".join(ret) @property def dt(self) -> float: """Length of a time step.""" return self._dt @dt.setter def dt(self, new_dt: float) -> None: try: tmp_dt = float(new_dt) except Exception as e: raise AssertionError("Argument 'dt' must be float.") from e assert tmp_dt > 0.0, \ "Argument 'dt' must be bigger than 0." self._dt = tmp_dt @property def order(self) -> float: """Time evoling block decimation (TEBD) Trotterization order. """ return self._order @order.setter def order(self, new_order: int) -> None: tmp_order = int(new_order) assert tmp_order > 0, \ "Argument 'order' must be an integer bigger than 0." self._order = tmp_order @order.deleter def order(self) -> None: self._order = PT_TEBD_DEFAULT_ORDER @property def epsrel(self) -> float: """The maximal relative error in the singular value truncation. """ return self._epsrel @epsrel.setter def epsrel(self, new_epsrel: float) -> None: try: tmp_epsrel = float(new_epsrel) except Exception as e: raise AssertionError("Argument 'epsrel' must be float.") from e assert tmp_epsrel > 0.0, \ "Argument 'epsrel' must be bigger than 0." self._epsrel = tmp_epsrel @epsrel.deleter def epsrel(self) -> None: self._epsrel = PT_TEBD_DEFAULT_EPSREL
[docs]class PtTebd(BaseAPIClass): """ Process tensor time evolving block decimation (PT-TEBD). Backend configuration `backend_config` may have the following options: * 'parallel' : 'multiprocess' / 'multithread' Parameters ---------- initial_augmented_mps: AugmentedMPS Initial augmented MPS. system_chain: SystemChain Object encoding the system chain Liouvillians. process_tensors: List[BaseProcessTensor] List of process tensors, one for each site. If a process tensor is 'None' it is assumed to be a trivial process tensor. parameters: PtTebdParameters PT-TEBD computation parameters. chain_control: ChainControl Optional control operations. start_time: float Optional starting time stamp. start_step: int Optional starting time step dynamics_sites: List[Union[int,tuple]] Optional list of single sites or multiple site dynamics to be recorded. backend_config: dict Optional backend configuration dictionary. """ def __init__( self, initial_augmented_mps: AugmentedMPS, system_chain: SystemChain, process_tensors: List[Union[BaseProcessTensor, NoneType]], parameters: PtTebdParameters, chain_control: Optional[ChainControl] = None, start_time: Optional[float] = 0.0, start_step: Optional[int] = 0, dynamics_sites: Optional[List[Union[int, tuple]]] = None, backend_config: Optional[Dict] = None) -> None: """Create a AugmentedMPS object. """ assert isinstance(initial_augmented_mps, AugmentedMPS) self._initial_augmented_mps = initial_augmented_mps assert isinstance(system_chain, SystemChain) self._system_chain = system_chain assert isinstance(process_tensors, list) self._process_tensors = [] for process_tensor in process_tensors: if process_tensor is None: self._process_tensors.append(TrivialProcessTensor()) else: assert isinstance(process_tensor, BaseProcessTensor) self._process_tensors.append(process_tensor) assert isinstance(parameters, PtTebdParameters) self._parameters = parameters if chain_control is None: self._chain_control = ChainControl( hilbert_space_dimensions=self._system_chain.hs_dims) else: assert isinstance(chain_control, ChainControl) self._chain_control = chain_control assert isinstance(start_time, float) self._start_time = start_time assert isinstance(start_step, int) self._start_step = start_step if backend_config is None: self._backend_config = {} else: assert isinstance(backend_config, dict) self._backend_config = backend_config if dynamics_sites is not None: assert isinstance(dynamics_sites, list) tmp_dynamics_sites = [] for sites in dynamics_sites: if isinstance(sites, int): tmp_dynamics_sites.append(sites) elif isinstance(sites, tuple): tmp_dynamics_sites.append(sites) self._dynamics_sites = tmp_dynamics_sites else: self._dynamics_sites = [] self._tebd_propagator = None self._t_mps = None self._results = None self._step = None
[docs] def initialize(self) -> None: """Initialize propagator, the PT-TEBD backend and results. """ self._step = self._start_step self._tebd_propagator = compute_tebd_propagator( system_chain=self._system_chain, time_step=self._parameters.dt/2.0, epsrel=self._parameters.epsrel, order=self._parameters.order) self._results = {} self._t_mps = PtTebdBackend( gammas=self._initial_augmented_mps.gammas, lambdas=self._initial_augmented_mps.lambdas, epsrel=self._parameters.epsrel, config=self._backend_config) self._init_results() self._apply_controls(step=self.step, post=False) self._append_results()
def _init_results(self) -> None: """Initialise the results dictionary. """ pt_bond_dimensions = {} for site, pt in enumerate(self._process_tensors): if pt is not None: pt_bond_dimensions[site] = pt.get_bond_dimensions() self._results = { 'time':[], 'norm': [], 'bond_dimensions': [], 'dynamics': {}, 'pt_bond_dimensions': pt_bond_dimensions, } for sites in self._dynamics_sites: self._results['dynamics'][sites] = Dynamics(name=f"site{sites}") def _append_results(self) -> None: """Append new results to the results dictionionary. """ self._t_mps.compute_traces(self._step, self._process_tensors) time = self.time(self._step) norm = self._t_mps.get_norm() bond_dimensions = self._t_mps.get_bond_dimensions() self._results['time'].append(time) self._results['norm'].append(norm) self._results['bond_dimensions'].append(bond_dimensions) for sites, dynamics in self._results['dynamics'].items(): if isinstance(sites, int): sites_list = [sites] else: sites_list = list(sites) dynamics.add( time, self._t_mps.get_density_matrix(sites_list)) self._t_mps.clear_traces() def _apply_controls( self, step: int, post: bool) -> None: """Apply the control operations. """ controls = self._chain_control.get_single_site_controls(step, post) if controls is None: return control_gates = [] for site, control in enumerate(controls): if control is not None: control_gates.append(SiteGate(site, control)) control_gate_layer = GateLayer(parallel=True, gates=control_gates) self._t_mps.apply_site_gate_layer(control_gate_layer) @property def step(self) -> int: """The current step in the PT-TEBD computation. """ return self._step
[docs] def time(self, step: int) -> float: """Return the time stamp for the time step 'step'. """ return self._start_time + self._parameters.dt*(step - self._start_step)
@property def chain_control(self) -> ChainControl: """The chain control object. """ return self._chain_control @chain_control.setter def chain_control(self, chain_control: ChainControl) -> None: if chain_control is None: del self.chain_control else: assert isinstance(chain_control, ChainControl) self._chain_control = chain_control @chain_control.deleter def chain_control(self) -> None: hs_dims = self._system_chain.hs_dims self._chain_control = ChainControl(hilbert_space_dimensions=hs_dims)
[docs] def get_augmented_mps(self) -> AugmentedMPS: """Returns a copy of the current AugmentedMPS. """ if self._t_mps is None: return self._initial_augmented_mps gammas = [] for i in range(self._t_mps.n): gammas.append(self._t_mps.get_gamma(i)) lambdas = [] for i in range(self._t_mps.n - 1): lambdas.append(self._t_mps.get_lambda(i)) return AugmentedMPS(gammas, lambdas)
[docs] def get_results(self) -> Dict: """Return the computed PT-TEBD results. """ results = {} results['time'] = np.array(self._results['time']) results['norm'] = np.array(self._results['norm']) results['bond_dimensions'] = np.array(self._results['bond_dimensions']) results['dynamics'] = self._results['dynamics'] results['pt_bond_dimensions'] = self._results['pt_bond_dimensions'] return results
[docs] def get_current_density_matrix(self, sites: Union[int, tuple]): """ Get the current density matrix of the site(s) 'sites'. Parameters ---------- sites: Union[int, tuple] The site(s). """ if isinstance(sites, int): sites_list = [sites] else: sites_list = list(sites) self._t_mps.compute_traces(self._step, self._process_tensors) return self._t_mps.get_density_matrix(sites_list)
[docs] def compute( self, end_step: int, progress_type: Text = None) -> Dict: """ Perform the PT-TEBD propagation up to time step 'end_step'. Parameters ---------- end_step: int The time step to which the propagation should be carried out. progress_type: Text The progress report type during the computation. Types are: {``'silent'``, ``'simple'``, ``'bar'``}. If `None` then the default progress type is used. """ try: tmp_end_step = int(end_step) except Exception as e: raise AssertionError("End step must be an integer.") from e if self.step is None: self.initialize() start_step = self.step num_step = max(0, end_step - start_step) progress = get_progress(progress_type) title = "--> PT-TEBD computation:" with progress(num_step, title) as prog_bar: while self.step < tmp_end_step: self.compute_step() prog_bar.update(self.step - start_step) prog_bar.update(self.step - start_step) return self.get_results()
[docs] def compute_step(self): """Take a step in the PT-TEBD tensor network computation. """ self._apply_controls(step=self.step, post=True) self._step += 1 for gate_layer in self._tebd_propagator.gate_layers: self._t_mps.apply_nn_gate_layer(gate_layer) self._t_mps.apply_process_tensors(self.step, self._process_tensors) for gate_layer in self._tebd_propagator.gate_layers: self._t_mps.apply_nn_gate_layer(gate_layer) self._apply_controls(step=self.step, post=False) self._append_results()